Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah Ali, ${ }^{\text {a }}$ M. Sukeri Yusof, ${ }^{\text {b }}$ Nur Ashikin Khamis, ${ }^{a}$ A. Sahali Mardi ${ }^{\text {b }}$ and Bohari M. Yamin ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.112$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Chloro- N-[N-(4-chlorobenzoyl)hydrazinocarbothioyl]benzamide

The title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, has a similar structure and similar structural dimensions to the unsubstituted $\mathrm{N}-(\mathrm{N}$ benzoylhydrazinocarbothioyl)benzamide. However, the presence of Cl atoms at the para and ortho positions in the benzamide and benzoyl groups, respectively, caused the dihedral angle between these groups to increase from $16.42(14)^{\circ}$ in the unsubstituted compound to $74.96(8)^{\circ}$. The molecule is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}$ interactions, forming polymeric chains parallel to the c axis.

Comment

The reaction of 2-chlorobenzoylisothiocyanate with 4-chlorobenzhydrazide leads to the formation of the title compound, (I), a chloro-substituted relation of N -(N -benzoylhydrazinocarbothioyl)benzamide (Yusof et al., 2003). The presence of Cl atoms at the para and ortho positions of the benzamide and benzoyl groups, respectively, does not change the cis-trans configuration with respect to their positions relative to the thiono S 1 atom across $\mathrm{C} 8-\mathrm{N} 2$ and $\mathrm{C} 8-\mathrm{N} 1$, respectively (Fig. 1). The bond lengths and angles of (I) (Table 1) are within normal ranges (Allen et al., 1987) and in agreement with those observed in N-(N-benzoylhydrazinocarbothioyl)benzamide.

(I)

The central thiourea moiety of (I) is planar, such that for the atom sequence $\mathrm{N} 1 / \mathrm{C} 8 / \mathrm{S} 1 / \mathrm{N} 2 / \mathrm{N} 3$, the maximum deviation is

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate the intramolecular hydrogen bonds.

Received 20 July 2004
Accepted 18 August 2004 Online 31 August 2004
0.012 (2) \AA for atom N 1 , and for the chloro-benzamide $\mathrm{Cl} 2 /$ (C9-C15), the maximum deviation is $0.053(1)^{\circ}$ for atom Cl 2 . The benzoyl fragment is also planar [atom O 1 is displaced by -0.873 (1) \AA from the mean plane of the phenyl ring (O1/C1C6)]. However, the dihedral angle between the central moiety and the benzoyl group of $71.57(8)^{\circ}$ is larger than that in $\mathrm{N}-(\mathrm{N}-$ benzoylhydrazinocarbothioyl)benzamide [15.12 (11) ${ }^{\circ}$]. On the other hand, the dihedral angle with the chloro-benzamide group is reduced from $31.45(12)^{\circ}$ in N-(N-benzoylhydrazinocarbothiol)benzamide to 5.53 (3) ${ }^{\circ}$ in (I). Similarly, the inclination between both aryl groups of 74.96 (8) ${ }^{\circ}$ is larger than the value of $16.42(14)^{\circ}$ in the unsubstituted benzamide, indicating the role of steric effects on the ortho isomer.

There are two intramolecular hydrogen bonds in the molecule of (I), N2-H2A $\cdots \mathrm{O} 1$ and $\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{~S} 1$, and as a result, a six-membered ring $(\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 A-\mathrm{O} 1)$ and a five-membered ring ($\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1-\mathrm{H} 3 A-\mathrm{N} 3$) are formed. In the crystal structure of (I), the molecules are linked by $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1^{\mathrm{i}}$ and $\mathrm{C} 11-\mathrm{H} 12 A \cdots \mathrm{O} 2^{\text {ii }}$ intermolecular interactions (symmetry codes as in Table 2) into an infinite chain parallel to the c axis (Fig. 2).

Experimental

A solution of 4-chlorobenzhydrazide $(1.87 \mathrm{~g}, 0.011 \mathrm{~mol})$ in acetone (50 ml) was added dropwise to an acetone solution containing an equimolar quantity of 2-chlorobenzoylisothiocyanate in a tri-neck round-bottomed flask. The solution was refluxed for about 1 h and then cooled on ice. The white precipitate which formed was filtered off and washed with ethanol-distilled water, then dried in a vacuum (80% yield). Recrystallization from ethyl acetate yielded single crystals of (I) suitable for X-ray analysis.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=368.24 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.498(1) \AA \\
& b=10.449(2) \AA \\
& c=11.861(2) \AA \\
& \alpha=110.37(1)^{\circ} \\
& \beta=104.62(1)^{\circ} \\
& \gamma=96.57(1)^{\circ} \\
& V=821.7(3) \AA^{\circ}
\end{aligned}
$$

$$
Z=2
$$

$D_{x}=1.488 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 936 reflections
$\theta=1.9-27.0^{\circ}$
$\mu=0.53 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.48 \times 0.37 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
 ω scans
 Absorption correction: multi-scan
 (SADABS; Sheldrick, 1996)
 $T_{\text {min }}=0.783, T_{\text {max }}=0.914$
 9062 measured reflections

3549 independent reflections
3216 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$

Refinement

[^0]

Figure 2
A packing diagram for (I), viewed down the a axis. Dashed lines denote $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 5$	$1.744(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.384(2)$
$\mathrm{C} 2-\mathrm{C} 13$	$1.7350(19)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.317(2)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.6743(17)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.375(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.371(2)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2$	$3.0(3)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 9-\mathrm{O} 2$	$4.9(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$-176.17(15)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 10$	$-174.80(15)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 9$	$-161.68(17)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$-178.28(15)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$-8.5(3)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$0.8(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.92	$2.613(2)$	136
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~S} 1$	0.86	2.71	$2.9925(17)$	101
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 1^{\mathrm{i}}$	0.86	2.52	$3.3649(17)$	170
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.42	$3.329(2)$	166
Symmetry codes: (i) $-x, 2-y, 1-z ;$ (ii) $1-x, 2-y,-z$.				

After their location in the difference map, all H atoms were fixed geometrically in ideal positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-03-0125 and 09-02-02-0163, respectively.

organic papers

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. S. M., Yamin, B. M. \& Shamsuddin, M. (2003). Acta Cryst, E59, o810-o811.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
 $w R\left(F^{2}\right)=0.112$
 $S=1.05$
 3549 reflections
 208 parameters
 H -atom parameters constrained

