organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hapipah Ali,^a M. Sukeri Yusof,^b Nur Ashikin Khamis,^a A. Sahali Mardi^b and Bohari M. Yamin^b*

^aDepartment of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia, and ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.112 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Chloro-*N*-[*N*-(4-chlorobenzoyl)hydrazinocarbothioyl]benzamide

The title compound, $C_{15}H_{11}Cl_2N_3O_2S$, has a similar structure and similar structural dimensions to the unsubstituted *N*-(*N*benzoylhydrazinocarbothioyl)benzamide. However, the presence of Cl atoms at the *para* and *ortho* positions in the benzamide and benzoyl groups, respectively, caused the dihedral angle between these groups to increase from 16.42 (14)° in the unsubstituted compound to 74.96 (8)°. The molecule is stabilized by intermolecular C–H···O and N– H···S interactions, forming polymeric chains parallel to the *c* axis.

Comment

The reaction of 2-chlorobenzoylisothiocyanate with 4-chlorobenzhydrazide leads to the formation of the title compound, (I), a chloro-substituted relation of N-(N-benzoyl-hydrazinocarbothioyl)benzamide (Yusof *et al.*, 2003). The presence of Cl atoms at the *para* and *ortho* positions of the benzamide and benzoyl groups, respectively, does not change the *cis*-*trans* configuration with respect to their positions relative to the thiono S1 atom across C8-N2 and C8-N1, respectively (Fig. 1). The bond lengths and angles of (I) (Table 1) are within normal ranges (Allen *et al.*, 1987) and in agreement with those observed in N-(N-benzoyl-hydrazinocarbothioyl)benzamide.

The central thiourea moiety of (I) is planar, such that for the atom sequence N1/C8/S1/N2/N3, the maximum deviation is

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate the intramolecular hydrogen bonds.

 $\ensuremath{\mathbb{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 20 July 2004 Accepted 18 August 2004 Online 31 August 2004

0.012 (2) Å for atom N1, and for the chloro-benzamide Cl2/ (C9–C15), the maximum deviation is $0.053 (1)^{\circ}$ for atom Cl2. The benzoyl fragment is also planar [atom O1 is displaced by -0.873 (1) Å from the mean plane of the phenyl ring (O1/C1-C6)]. However, the dihedral angle between the central moiety and the benzoyl group of 71.57 (8)° is larger than that in N-(Nbenzoylhydrazinocarbothioyl)benzamide [15.12 (11)°]. On the other hand, the dihedral angle with the chloro-benzamide group is reduced from 31.45 $(12)^{\circ}$ in N-(N-benzoylhydrazinocarbothiol)benzamide to $5.53 (3)^{\circ}$ in (I). Similarly, the inclination between both aryl groups of 74.96 $(8)^{\circ}$ is larger than the value of $16.42 (14)^{\circ}$ in the unsubstituted benzamide, indicating the role of steric effects on the ortho isomer.

There are two intramolecular hydrogen bonds in the molecule of (I), N2-H2A···O1 and N3-H3A···S1, and as a result, a six-membered ring (C7-N1-C8-N2-H2A-O1) and a five-membered ring (N2-C8-S1-H3A-N3) are formed. In the crystal structure of (I), the molecules are linked by N1-H1A···S1ⁱ and C11-H12A···O2ⁱⁱ intermolecular interactions (symmetry codes as in Table 2) into an infinite chain parallel to the c axis (Fig. 2).

Experimental

A solution of 4-chlorobenzhydrazide (1.87 g, 0.011 mol) in acetone (50 ml) was added dropwise to an acetone solution containing an equimolar quantity of 2-chlorobenzoylisothiocyanate in a tri-neck round-bottomed flask. The solution was refluxed for about 1 h and then cooled on ice. The white precipitate which formed was filtered off and washed with ethanol-distilled water, then dried in a vacuum (80% yield). Recrystallization from ethyl acetate yielded single crystals of (I) suitable for X-ray analysis.

Crystal data

Z = 2
$D_x = 1.488 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 936
reflections
$\theta = 1.9-27.0^{\circ}$
$\mu = 0.53 \text{ mm}^{-1}$
T = 273 (2) K
Block, colourless
$0.48 \times 0.37 \times 0.17 \text{ mm}$

Data collection

Bruker SMART APEX CCD area- detector diffractometer	3549 independent reflections 3216 reflections with $I > 2\sigma(I)$	geometr
ωscans	$R_{\rm int} = 0.015$	$1.2U_{eq}($
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$\theta_{\max} = 27.0^{\circ}$ $h = -9 \rightarrow 9$	Data
$T_{\min} = 0.783, \ T_{\max} = 0.914$	$k = -13 \rightarrow 13$	(Siemer
9062 measured reflections	$l = -15 \rightarrow 15$	structur

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ wR(F²) = 0.112 S = 1.053549 reflections 208 parameters H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0581P)^2]$ + 0.2898P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.54$ e Å $\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

A packing diagram for (I), viewed down the a axis. Dashed lines denote C-H···O interactions and N-H···S hydrogen bonds.

Table 1

Table 2

Selected geometric parameters (Å, °).

Cl1-C5	1.744 (2)	N1-C8	1.384 (2)
Cl2-C13	1.7350 (19)	N2-C8	1.317 (2)
S1-C8	1.6743 (17)	N2-N3	1.375 (2)
N1-C7	1.371 (2)		
C7-N1-C8-N2	3.0 (3)	N2-N3-C9-O2	4.9 (3)
C7-N1-C8-S1	-176.17 (15)	N2-N3-C9-C10	-174.80(15)
C8-N2-N3-C9	-161.68(17)	N3-N2-C8-N1	-178.28(15)
C8-N1-C7-O1	-8.5 (3)	N3-N2-C8-S1	0.8 (3)

Hydrogen-bonding geometry (Å, °).						
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$		
$N2-H2A\cdotsO1$	0.86	1.92	2.613 (2)	136		
$N3-H3A\cdots S1$	0.86	2.71	2.9925 (17)	101		
$N1-H1A\cdots S1^{i}$	0.86	2.52	3.3649 (17)	170		
$C11-H11A\cdots O2^{ii}$	0.93	2.42	3.329 (2)	166		

Symmetry codes: (i) -x, 2 - y, 1 - z; (ii) 1 - x, 2 - y, -z.

After their location in the difference map, all H atoms were fixed rically in ideal positions and allowed to ride on their parent with C-H = 0.93 Å and N-H = 0.86 Å, and with $U_{iso}(H)$ = C,N).

collection: SMART (Siemens, 1996); cell refinement: SAINT ns, 1996); data reduction: SAINT; program(s) used to solve e: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-03-0125 and 09-02-02-0163, respectively.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Yusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst, E59, 0810-0811.